Statistical properties of periodic orbits in 4-disk billiard system: pruning-proof property
نویسنده
چکیده
Abstract Periodic orbit theory for classical hyperbolic system is very significant matter of how we can interpret spectral statistics in terms of semiclassical theory. Although pruning is significant and generic property for almost all hyperbolic systems, pruning-proof property for the correlation among the periodic orbits which gains a resurgence of second term of the random matrix form factor remains open problem. In the light of the semiclassical form factor, our attention is paid to statistics for the pairs of periodic orbits. Also in the context of pruning, we investigated statistical properties of the “actual” periodic orbits in 4-disk billiard system. This analysis presents some universality for pair-orbits’ statistics. That is, even if the pruning progresses, there remains the periodic peak structure in the statistics for periodic orbit pairs. From that property, we claim that if the periodic peak structure contributes to the correlation, namely the off-diagonal part of the semiclassical form factor, then the correlation must remain while pruning progresse.
منابع مشابه
Periodic Orbit Quantization of the Closed Three-disk Billiard as an Example of a Chaotic System with Strong Pruning
Classical chaotic systems with symbolic dynamics but strong pruning present a particular challenge for the application of semiclassical quantization methods. In the present study we show that the technique of periodic orbit quantization by harmonic inversion of trace formulae, which does not rely on the existence of a complete symbolic dynamics or other specific properties, lends itself ideally...
متن کاملOn configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards
The classical billiard system describes the motion of a point in a plane domain subject to the elastic reflection off the boundary, described by the familiar law of geometrical optics: the angle of incidence equals the angle of reflection; see, e.g., [13, 14] for surveys of mathematical billiards. For every n ≥ 2, the billiard system inside a circle has a very special property: every point of t...
متن کاملSymbolic Dynamics I Finite Dispersive Billiards
Orbits in different dispersive billiard systems, e.g. the 3 disk system, are mapped into a topological well ordered symbol plane and it is showed that forbidden and allowed orbits are separated by a monotone pruning front. The pruning front can be approximated by a sequence of finite symbolic dynamics grammars. 1 ‡ Permanent address: Phys Dep., University of Oslo, Box 1048, Blindern, N-0316 Oslo
متن کاملA Few Remarks on Periodic Orbits for Planar Billiard Tables
I announce a solution of the conjecture about the measure of periodic points for planar billiard tables. The theorem says that if Ω ⊂ R is a compact domain with piecewise C boundary, then the set of periodic orbits for the billiard in Ω has measure zero. Here I outline a proof. A complete version will appear elsewhere.
متن کاملThree-periodic orbits on hyperbolic plane
Consider what is called the classical (Birkhoff) billiard problem: a particle moves in the planar convex domain D along the straight lines interacting with the boundary ∂D according to the Fermat’s law“ angle of reflection is equal to the angle of incidence”. In mathematical physics it is important to understand how many periodic orbits can be present in a planar billiard. Periodic orbits are t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005